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Abstract

Following the global financial crisis of 2007-2009, bank regulators have adopted special
resolution procedures for global systemically important banks. They now have the
power to seize these banks when their capital falls below some threshold, and to sell
them back to new investors after having restructured them. This paper characterizes
the optimal intervention thresholds and studies the interactions with the dividend and
equity issuance policies of global systemically important banks. The main findings
of our analysis for the optimal regulatory policy are: First, when the restructuring
costs are high, it is optimal for regulators to impose dividend payout restrictions for
undercapitalized banks. Second, in states of the economy, where capital supply becomes
more scarce, these results are aggravated. In particular, regulators intervene relatively
earlier, set stricter dividend payout restrictions and require relatively higher initial
capital of the banks. Finally, capital supply constraints have an important impact on
the financing decisions of shareholders. Banks recapitalize less frequently when the cost
of raising equity is high or when the external capital supply is plentiful.
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1 Introduction

The 2007-2009 financial crisis has brought into the attention of regulatory authorities the
massive risks generated by the so-called Global Systemically Important Banks (G-SIBs).1

During the crisis, costly government interventions such as bail-outs of large, complex banks
or other financial institutions2 and the disruptive bankruptcies of Lehman Brothers or other
systemically important financial institutions have been followed by a turmoil in the world’s
financial markets. As a direct reaction to the financial crisis, governments have agreed on
the necessity of reforms of the existing regulations. In particular, the development of special
resolution mechanisms to deal with the distress or even failure of Systemically Important
Financial Institutions (SIFIs) (such as G-SIBs) has been in the focus of the joint effort
to design, promote and implement reforms of the financial regulations.3 The Dodd-Frank
Wall Street Reform and Consumer Protection Act, which was established in the US in July
2010, authorizes the Federal Deposit Insurance Corporation (FDIC) to step-in and resolve
a situation of severe financial distress of a systemically important financial firm.4 This
mechanism should assure a fast stabilization of the financial firm in order to protect the
taxpayers’ rights and the financial system by dispensing from the necessity of a bail-out
and ensuring the continuation of the systemically important financial intermediary. The
key feature is that the FDIC obtains the full power over the management of the distressed
financial institution. In particular, it has the right to seize, restructure and subsequently
sell a G-SIB that is in a financially distressed situation. In addition, the Basel Committee
on Banking Supervision introduced Basel III decisions in September 2010 which focus on
increasing the loss absorbing capacity of G-SIBs by proposing higher capital requirements
and by introducing capital surcharges for these institutions.5 As part of these new reg-
ulations, the Financial Stability Board (FSB) introduced new international standards for
effective resolution procedures [9] in November 2011, which also emphasize the more in-
tensive and effective supervision of all G-SIBs. Finally, European Union (EU) is currently
adopting new reforms on the structure of EU banking sector which aim at eradicating

1The term Global Systemically Important Bank refers to a financial institution whose distress or a
close-down has substantial adverse effects on an economy due to its complexity, size, national and global
interconnectedness, and central role as financial intermediary in an economy. The Basel Committee on
Banking Supervision developed an indicator-based measurement approach to determine which banks are
global systemically important. For each individual bank, the method calculates the weighted average of
the indicator values representing five categories of systemic importance, which are: size, cross-jurisdictional
activity, interconnectedness, substitutability, and complexity. The Financial Stability Board annually an-
nounces the list of G-SIBs with regard to this approach.

2AIG, Freddie Mac and Fannie Mae are popular examples for the bail-outs during the crisis.
3Since the main focus of this study is on Global Systemically Important Banks, we refer in what follows

only to G-SIBs even though the new regulation apply to systemically important financial institutions in
general.

4See https://www.sec.gov/about/laws/wallstreetreform-cpa.pdf for detail.
5See http://www.bis.org/bcbs/basel3.htm for detail.
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too-big, too-complex, too-interconnected-to-fail properties embodied by G-SIBs.
One of the main problems that the regulators face in the implementation of these new
policy rules is, however, the actual management of the resolution procedures. That is,
when it is optimal, from a social welfare point of view, that the regulator steps-in, decides
to restructure and subsequently sells a G-SIB. Moreover, from a regulatory point of view,
it is also crucial to prevent G-SIBs from reaching a highly critical situation at all. In order
to do so, it might be optimal to restrict the dividend policy of these banks. Furthermore,
it is unclear whether the new regulatory policy might actually have adverse effects on
shareholders’ financing decisions. In particular, shareholders of the bank might anticipate
the potential restructuring interventions of the regulator and therefore issue new equity
earlier than it would be optimal.
This paper presents a dynamic model that contributes to our understanding about optimal
regulatory intervention policies and their interaction with the optimal financing policies of
G-SIBs. Importantly, the model incorporates also the impact of capital supply constraints.
One main reason why solvency problems of a bank might be exacerbated and potentially
even lead to insolvency, is the capital supply uncertainty. During market downturns and
credit crises, outside investors are not always standing by to finance firms. The 2007-2009
financial crisis is a recent illustration of a situation of severe capital supply constraints.
Therefore, we directly incorporate these constraints in our model by assuming that investors
that are willing to inject fresh equity only arrive at an uncertain (i.e. stochastic) rate.
Decreasing the intensity of investor arrival allows us to directly study the impact of capital
supply constraints on the equity issuance decisions of firms and on the optimal resolution
and dividend payout restriction policies of the regulator.
The main features of the model are as follows. The cash flows of the bank follow an arith-
metic Brownian motion and the bank has a fixed size.6 The regulator continuously audits
the bank’s capital. Depending on the level of the capital, the regulator can decide on the
optimal single-point-of-entry for a global systemically important bank. The regulator en-
dogenously defines a capital threshold under which the bank is restructured. In particular,
every time the bank’s capital falls below a certain nonnegative level, the shareholders are
expropriated, the bank is restructured and privatized by the regulator.7 Another important
feature of the model is that we allow the regulator to restrict the dividend payout policy
of the bank depending on the capital. The intuition is that the interests of the regulator
and shareholders potentially run counter to each other since the shareholders maximize the
market value of equity instead of the social welfare that the regulator aims to maximize.

6For the sake of simplicity, we take the size of the bank to be given in our model. Moreover, we assume
that the bank is systemically important and leave the question of when a bank is to be considered as
systemically important for future research.

7Such a policy has been successfully implemented in Scandinavian countries, in particular in Sweden,
during the banking crises in early 1990′s. Regulators did nationalize almost one third of banks, restructured
and sold them to the private sector with a profit.
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The initial capital of the bank is also endogenously chosen by the regulator.8 Finally, in
addition to the capital supply uncertainty, we introduce a fixed cost of new equity issuance.
Due to this model feature, the management of the bank chooses endogenously the time of
the new equity issuance by aiming to maximize the value of the equity.9

The main findings of our analysis for the optimal regulatory policy are: First, when the
restructuring costs are high, it is optimal for regulators to impose dividend payout restric-
tions for undercapitalized banks. Second, initial capital that should be invested by the
shareholders of the bank is positively related with the restructuring costs. More specifi-
cally, when the restructuring costs are high, regulators require banks to invest higher initial
capital to prevent possible costly restructuring. Third, in states of the economy where
capital supply becomes more scarce these results are aggravated. For instance, regulators
intervene relatively earlier, set stricter dividend payout restrictions and require relatively
higher initial capital of the banks. We further find that capital supply constraints have
an important impact on the financing decisions of shareholders. Banks recapitalize less
frequently when the cost of raising equity is high or when external capital supply is high.
We believe that, overall, our findings make an important step towards solving the prob-
lem of the implementation of the new resolution procedures for G-SIBs and improve our
understanding about their potential adverse effects on shareholders’ financing decisions.
The remainder of the paper is organized as follows. Section 2 gives a brief review of the
literature. We describe our model in Section 3. In Section 4 we provide the characterization
of the value function and the restructuring, equity issuance, and payout policies. Section
5 contains the numerical analysis and section 6 finally concludes. The proofs and Figures
are gathered in Appendix A and B, respectively.

2 Related Literature

Our paper builds on recent studies in the corporate finance literature that analyze the
implications of financing constraints on corporate policies by using continuous time models.
We extend these papers by including essential properties that are specific to banks and
characterize the optimal regulatory intervention policies and their interaction with the
optimal financing policies of G-SIBs under financial frictions that are mainly related to
capital supply uncertainty.
The first strand of the related literature comprises the banking regulation studies that rely
on the ‘valuation approach’. This strand dates back to Merton [18] who derives deposit
insurance costs by utilizing the famous Black-Scholes framework. Merton defines an iso-
morphism between deposit insurance and put options on firm equity and utilizes explicit

8The regulator chooses initial capital, the restructuring and dividend thresholds of the bank with the
objective of social welfare maximization.

9Even though it might be an interesting avenue for future research, we do not consider any moral hazard
problem between managers and equity holders in this work.
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formulas from the Black-Scholes model. He extends the framework by incorporating audit-
ing costs and random auditing times in a subsequent paper [19]. Marcus [17] emphasizes the
impact of franchise value and bankruptcy costs to the banks’ policy.10 He concludes that
as the franchise value of the banks decreases (increases), banks become more risk-loving
(risk-averse). Fries et al. [11] investigate optimal bank closure rules and their implications
on deposit insurance pricing in a setting where the regulator continuously audits. They
show that the regulator optimally balances the monitoring and bankruptcy costs. An op-
timal closure rule has the feature that, given lower monitoring costs and the independence
of bankruptcy costs and profitability, the regulator postpones the closure until the bank’s
asset value is low enough to decrease the bankruptcy costs. Milne and Whalley [22] is
the closest paper to our study in the banking regulation literature. They build a model
that examines the effects of capital regulation and audit frequency on the incentives of
commercial banks. The model is an extension of the continuous-time capital structure
trade-off model of Milne and Robertson [21] by means of incorporating Poisson distributed
audits of the regulator, which result in either liquidation or restructuring of the bank, and
which are subject to a fixed cost.11 Their analysis shows that the fear of liquidation pro-
vides an incentive for banks to hold an extra capital buffer with respect to the regulatory
threshold. Our paper differs from Milne and Whalley [22] in the following ways: First, we
introduce capital supply uncertainty instead of assuming perfect elasticity of the capital
supply. Second, we assume continuous audit of the regulator and the direct restructuring
of the bank in case of a financial distress. Milne [20] utilizes the incentive mechanism in
Milne and Whalley [22] for examining the banks’ portfolio choice. He shows that, given
the ex-post penalty of capital requirements violation, the main impact of capital regulation
is reflected as ex-ante incentives of the bank to avoid these capital requirement breaches.
Thus, in contrast to the literature, he proposes strengthening regulatory ex-post penalties.
Bhattacharya et al. [3] analyze optimal closure rules for banks in a regulatory structure
consisting of audit frequency, capital replenishment and closure rules depending on the risk
level of banks. They demonstrate that the excessive risk taking behavior of solvent banks
can be deterred by an optimal combination of capital adequacy, closure and auditing rules.
Decamps, Rochet, and Roger [7] propose a dynamic model to grasp the interaction of the
three pillars of Basel II: capital adequacy requirement, supervisory review, and market dis-
cipline. They find that the capital adequacy requirement should be used as a vehicle to
oblige the closure before the bank becomes insolvent. Moreover, when the cash flows of the
bank are not visible without high monitoring costs, the bank should be required to raise
subordinated debt with a cash flow contingent payoff, which yields a cash flow threshold

10Marcus denotes it as ‘charter value’, which represents the present value of the expected future earnings
that is lost in case of liquidation.

11 The paper characterizes the optimal corporate policies in an environment, in which the firm is inelastic
to raise debt or equity and is subject to liquidation when the cash flows drop to a certain level. Therefore,
optimal firm behavior shows a risk aversion, which is negatively correlated with the liquid assets in hand.
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for auditing. However, their results are contingent on non-volatile market prices and the
independence of regulators from political pressure. Our contribution to the existing litera-
ture in banking regulation is to introduce capital supply uncertainty and to investigate the
impact of this friction to global systemically important banks’ capital management policies
under regulation.
The second strand of the related literature includes the recent corporate finance papers on
financing frictions. In these models, cash hoarding is precautionary due to either external
financing costs or capital supply uncertainty.12 Décamps et al. [6] develop a dynamic model
of cash management with two financial constraints: internal agency frictions and external
financing costs. The model is solved in closed-form and the optimal payout and equity
issuance policies are fully characterized. Implications of financial frictions on the issuance
and dividend policies, corporate cash value, and the stock price dynamics are presented.
In a contemporaneous study, Bolton et al. [4] extend Décamps et al. [6] by incorporating
flexible firm size which allows them to investigate investment in a dynamic manner. They
enhance the existing results by demonstrating that the investment depends on the ratio
of marginal q to the marginal cost of financing. An extension of these two papers is
the study of Bolton et al. [5], which allows for time varying investment and stochastic
financing opportunities.13 The key observations are: First, during market downturns or
weak financing conditions the firm has a precautionary motive for holding cash, reduces
investment, and postpones pay-outs. However, during favorable market conditions the firm
may rationally time the market and issue equity even when it is not necessary. The models
in previous studies have a common feature that firms always follow a double barrier policy
for issuance and payout. On the contrary, by introducing capital supply uncertainty and
lumpy investment, Hugonnier et al. [12] show that optimal financing and payout policies
of firms may differ from standard double barrier (S,s) policies. Another appealing result
in their study is that smooth-pasting conditions in preceding papers are necessary but not
sufficient. Our model is built on the setup in Hugonnier et al. [12] without growth option.
We adapt the existing setup in Hugonnier et al. [12] to a continuous time framework for
a G-SIB and analyze capital supply effects to the optimal dividend, equity issuance, and
restructuring policies of these institutions.

3 Model

We model a bank with capital (equity) (Ct) that collects deposits (D) from the public,
transforms them into risky assets (A), and optimizes its cash buffer (Mt) by retaining
earnings or raising new equity from outside investors. For the sake of simplicity, the deposit

12The precautionary motive for holding cash was introduced by the grandfather of modern macroeco-
nomics, Keynes [14]. In the recent literature, e.g., Kim et al. [16], Almeida et al. [1] and Bates et al. [2]
emphasize this motive as well.

13 In particular, there exist two states for capital at any point in time: cheap and expensive.
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volume is taken as a constant and the interest rate paid to the depositors is assumed to be
zero. Asset value (A) represents the loans and is taken as a constant as well. Hence, the
balance sheet of the bank (book value) is given as

A D
Mt Ct

We have a continuous time model with no agency frictions: the manager acts in the best
interest of shareholders. Shareholders and the manager of the bank are risk neutral and
discount the future payments at a constant rate r. Uncertainty in the model is described
by (Ω,F,P), a filtered probability space satisfying the usual assumptions.14 Risky Assets
(A) of the bank generate random cash flows that follow an arithmetic Brownian motion

dYt = µdt+ σdBt, (3.1)

where µ and σ are constant (mean and volatility of the cash flows), and Bt is a standard
Brownian motion.15 Therefore, the bank may have operating losses, which are financed
through cash reserves. The bank uses additional financing through raising new equity.16

The core financial friction in the model is the capital supply uncertainty. The bank has to
search for outside investors in order to raise new equity. There is no search cost but the
outside investors appear at the jump times of a Poisson process Nt with intensity λ. Thus,
the expected outside financing lag is 1

λ years. Raising outside financing has a fixed cost, F .
In particular, to obtain f ≥ 0, the bank has to raise f + F from outside financiers. Hence,
when outside investors arrive, the bank will raise outside equity only if it is profitable to
do so. Shareholders have limited liability and the cash reserves must remain nonnegative.
Dividend payments are chosen subject to these restrictions. Cumulative dividend payments
are expressed by Lt, which is an adapted, nondecreasing, càdlàg process with L0 = 0. The
returns on cash reserves are assumed to be zero. Thus, there is an opportunity cost of
holding cash, which makes the liquidity management crucial. In light of these assumptions,
the dynamics of the bank’s cash reserves satisfy

dMt = µdt+ σdBt − dLt + ftdNt, (3.2)

where ft denotes the outside fund process, which is nonnegative and predictable. Finally,

14See Karatzas and Shreve [15] for details.
15The rationale behind the choice of arithmetic Brownian motion for the cash flow process is that the

arithmetic Brownian motion fits well to the setup with fixed asset size and it captures the potential operating
losses.

16 As shown in the pioneering work of Jeanblanc-Picqué and Shiryaev [13], any form of debt (straight, con-
tingent convertible (coco), subordinated, etc.) is sub-optimal in the absence of tax benefits or public subsidy,
and some asymmetric information and corporate governance problems (moral hazard, asset substitution,
cash flow diversion, etc.).
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the book value of the equity is given by the balance sheet equation as

Ct = Mt +A−D.17

The bank is global systemically important: its closure would entail huge cost for the society.
Hence, the regulator adopts a special resolution procedure: every time that the bank’s
capital falls below a certain threshold c ≥ 0, the shareholders are expropriated, the bank is
restructured and privatized by the regulator again. The restructuring threshold c is chosen
by the regulator so as to maximize social welfare at date 0. Let A be the set of dividend
strategies such that Ec

[∫ τ
0 e
−rtdLt

]
<∞ for all c ≥ c and τ := inf{t ≥ 0|Ct = c}. The bank

maximizes the expected present value of future payments to the incumbent shareholders
until the first restructuring time τ , net of claim of the new (outside) investors on future
cash flows by choosing the bank’s payout (L ∈ A) and financing (f) policies:

Vs(c) = max
(L∈A,f)

E
[∫ τ

0
e−rt(dLt − (ft + 1{ft>0}F )dNt)|C0 = c

]
, (3.3)

where Vs is the value function (market value of equity) of the bank and 1 is the indicator
function. There is a trade-off for the shareholders in the choice of the optimal dividend
policy: When the bank distributes higher amount of dividends, the shareholders wealth
will be higher but the risk of restructuring will increase. However, if the bank keeps a
higher level of cash in the bank, the shareholders will get few dividends and will be subject
to the cost of holding cash. Therefore, as shown in the extant literature for firms, there
exists a target m∗ at which the marginal cost and benefit of holding cash are equalized,
and it becomes optimal for the shareholders to start paying dividends. This target cash
level corresponds to a capital threshold c∗ = m∗ +A−D.
In addition, at any time t such that Ct < c∗ and the outside investors arrive, the bank
raises outside funds to bring the capital to c∗ if it is profitable to do so. Considering the
fixed cost (F ), the net gain for the bank from raising outside equity is

(Vs(c
∗)− Vs(c))− (c∗ − c)− F.

Assuming concavity of the value function, V ′s (c∗) = 1 and V ′s (c) ≥ 1, ∀c ≤ c∗ ⇔ Vs(c)− c
is increasing in c.18 Then, taking into account the fixed cost of issuance (F ), the bank
raises outside funds only if the net gain is positive: Vs(c

∗)− c∗ − F > Vs(c)− c.
The left hand side of the above inequality is constant, whereas the right hand side is
increasing in c. Therefore, ∃ c1 < c∗ at which

Vs(c
∗)− c∗ − F = Vs(c1)− c1,

17The basic setup in our model yields dCt = dMt, which means that one can interpret the regulatory
policies in terms of either capital or reserve requirements.

18Concavity is proved in Appendix 2.A by adapting the methodology presented in Hugonnier et al. [12]
to our setup.
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i.e., marginal cost and benefit of raising outside equity are equal. Therefore, the bank raises
outside equity only if c ≤ c1.
On the other hand, the interests of the regulator and shareholders conflict in our framework
since the shareholders maximize the market value of equity (Vs) instead of social welfare
as the regulator does. Hence, we allow the regulator to prohibit dividends until the bank’s
capital reaches another threshold c ≥ c∗. This threshold is chosen by the regulator via
social welfare maximization:

W = max
c0,c,c

E
[∫ τ

0
e−rt(dLt − (ft + 1{ft>0}F )dNt) + e−rτ [−ξ + c+W ]

]
− c0. (3.4)

The interpretation of the above maximization problem is as follows: The regulator initially
gives a licence to the bank to operate. However, shareholders should invest c0 to get this
licence and initialize the bank, which gives them a certain value. The last term in the
expectation represents the expected discounted welfare gain from the next restructuring.
In particular, when the bank’s capital drops to c at time τ , the regulator expropriates
shareholders and restructures the bank by paying the fixed cost (ξ). Moreover, it takes the
bank’s capital (c) at that moment and the continuation welfare of the bank (W ) since the
bank is restarted. The below figure summarizes the new issuance policies of the shareholders
and the regulatory policies in different regions:

Figure 1: Policies in Different Regions.

In region I, the bank is restructured and privatized by the regulator. Region II is the
financial distress region, in which the bank raises new equity as soon as the new investors
arrive but it is not allowed to distribute dividends. In region III, raising new equity is not
profitable for the bank anymore and the dividend payout is still forbidden by the regulator.
Finally, the bank distributes excess cash as dividend to the shareholders in region IV.

4 Characterization of the Solution

In this section, we characterize the solution of the model. We start with the particular
case, F = ∞, i.e., the option to raise outside equity is never exercised. Then, we’ll move
to the general case with an outside financing option and investigate the optimal dividend,
equity issuance and restructuring policies for a global systemically important bank.
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4.1 Particular Case: F =∞

We start with a case where the voluntary recapitalization by shareholders is infinitely costly.
Under this circumstance, restructuring and dividend thresholds (c, c) are policy variables
chosen by the regulator. To better evaluate the effects of regulatory policies, we first
investigate the optimal dividend threshold for the shareholders in the case where regulators
do not restrict dividends. In this case, the manager decides on the optimal dividend policy
by maximizing the expected present value of all dividend payouts until restructuring and
the value function of the shareholders, Vs(c | c) := Vs(c) satisfies the following ordinary
differential equation (ODE):

rVs(c) = µV ′s (c) +
σ2

2
V ′′s (c) (4.1)

s.t. Vs(c) = 0, (4.2)

V ′s (c∗) = 1, (4.3)

V ′′s (c∗) = 0. (4.4)

The left hand side of equation (4.1) represents the expected return demanded by share-
holders. The first and second terms on the right hand side represent the change in the
bank’s value via expected cash flows and the cash flow volatility, respectively. Condition
(4.2) says that the bank’s value is zero at the time of restructuring. Condition (4.3) is
the smooth-pasting condition which implies that the marginal value of one dollar inside
or outside the bank are equal at the optimal dividend threshold. Condition (4.4) is the
super contact condition proved by Dumas [8] to be necessary and sufficient for optimality.
Boundary conditions imply that the value of the bank at the optimal dividend threshold
equals the first best value, i.e., Vs(c

∗) = µ
r . Given c, one can solve the above second order

homogenous ODE explicitly and the Proposition 4.1 summarizes the results.

Proposition 4.1 The value of the bank and the optimal dividend threshold for the share-
holders are given by

Vs(c) =

{
−η22eη1(c−c

∗)+η21e
η2(c−c

∗)

η1η2(η1−η2) , c ≤ c ≤ c∗

Vs(c
∗) + c− c∗, c ≥ c∗

(4.5)

c∗ = c+
ln(

η22
η21

)

η1 − η2
, (4.6)

where η1,2 =
−µ±
√
µ2+2σ2r

σ2 and Vs(c
∗) = µ/r. 19

19Note that η1 > 0 > η2 and |η1| < |η2|.
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Proposition 4.1 shows that the optimal dividend threshold c∗ is equal to the restructur-
ing threshold chosen by the regulator plus a constant term that depends on the average
profitability (µ), cash flow volatility (σ), and the discount rate (r).
We now proceed to the regulator’s problem. The restructuring and dividend thresholds of
the bank (c, c) and the initial capital (c0) are assumed to be policy variables chosen by the
regulator so as to maximize social welfare (W ). W is itself the solution of the following
equation

W = max
c0,c,c

V (c0; c, c)− c0 +G(c0; c, c)[−ξ + c+W ]. (4.7)

As mentioned above, shareholders invest c0 to get the license of the bank, which gives them
a value V (c0; c, c). Hence, V (c0; c, c) − c0 is the revenue raised by the public authorities
when granting the license to shareholders. The last term represents the expected dis-
counted welfare gain from the next restructuring where the function G(c0; c, c) := E[e−rτ ]
is the stochastic discount factor.20 This procedure is repeated to guarantee that the global
systemically important bank operates forever.
We start by solving V (c0; c, c) := V (c0) and G(c0; c, c) := G(c0). In the region (c, c),
functions V (c0) and G(c0) satisfy the following ODE’s:

rV (c0) = µV ′(c0) +
σ2

2
V ′′(c0)

s.t. V (c) = 0, (4.8)

V ′(c) = 1.

rG(c0) = µG′(c0) +
σ2

2
G′′(c0)

s.t. G(c) = 1, (4.9)

G′(c) = 0.

With the same intuition as in the shareholders’ problem, the initial condition in (4.8) arises
from the fact that the regulator stops the bank when the capital drops to c. Moreover,
the marginal value of capital will be one for the regulator at the level c, which implies the
boundary condition. On the other hand, the initial condition in (4.9) is due to the fact
that the bank will be directly restructured if it starts with the lower threshold level. In
addition, when the bank’s capital is at the level c, small positive changes in the cash reserves
will be suddenly distributed as dividends, which returns the capital back to c. Therefore,
the regulator will be indifferent, which implies the boundary condition. The closed form
solutions of (4.8) and (4.9) are given in Proposition 4.2.

20When r varies, this stochastic discount factor corresponds to the Laplace transform of the stopping
time.
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Proposition 4.2 The closed form solutions for the functions V (c0; c, c) and G(c0; c, c) are
given by

V (c0; c, c) =
eη2(c0−c) − eη1(c0−c)

η2eη2(c−c) − η1eη1(c−c)
, (4.10)

G(c0; c, c) =
−η2eη1(c0−c) + η1e

η2(c0−c)

η1e−η2(c−c) − η2e−η1(c−c)
(4.11)

where η1,2 =
−µ±
√
µ2+2σ2r

σ2 .

In light of the Proposition 4.2, we therefore seek the fixed point

WM = max
c0,c,c

H(c0, c, c,WM ), (4.12)

where

H(c0, c, c,WM ) ≡ eη2(c0−c) − eη1(c0−c)

η2eη2(c−c) − η1eη1(c−c)
− c0

+
−η2eη1(c0−c) + η1e

η2(c0−c)

η1e−η2(c−c) − η2e−η1(c−c)
[−ξ + c+WM ]. (4.13)

Proposition 4.3 Let T(W ) = maxc0,c,cH(c0, c, c,W ). Then, T is a contraction mapping
and (4.12) has the unique fixed point WM .

Next, we solve the above fixed point problem iteratively and find the values for the initial
capital, the restructuring and dividend thresholds. The numerical calculations show that
when the voluntary recapitalization is impossible, optimal regulatory policies are:

1. The restructuring threshold is c = A−D.

2. The regulator chooses a (weakly) higher dividend threshold than the shareholders:
c ≥ c∗.

3. When the restructuring cost ξ is higher than a critical value ξ∗ this inequality is strict.

Our first observation shows that the regulator always waits for the restructuring until the
bank’s capital falls below A-D or equivalently until the cash reserves of the bank drop to
zero. Possible explanations for this result are: First, the regulator continuously audits the
bank’s capital and the intervention of the regulator is immediate in our model. In addition,
bank’s assets and the capital are fully observable and we do not allow for negative jumps
in the cash flow process. Therefore, it may be reasonable for the regulator to wait until the
last point in time due to the possibility that the bank can recover itself from the financial
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distress region. The second observation is that when the restructuring cost is lower than a
critical value ξ∗, the optimal dividend thresholds of the regulator and shareholders coincide.
Hence, the regulator does not put any restriction on dividend payouts. However, when the
restructuring cost is high, i.e., ξ > ξ∗, the regulator prevents shareholders from distributing
dividends until c is reached. Figure 2 illustrates the optimal thresholds.

[Insert Figure 2 Here]

Figure 2 shows that the initial capital (c0) is positively related with the restructuring cost.
In particular, when the restructuring cost is high, the regulator starts the bank with higher
initial capital with an incentive to postpone the next costly restructuring event. This
incentive is not so strong for small restructuring cost levels, which implies lower c0 values.
In addition, the regulator starts to install dividend payout restrictions to prevent the bank
from financial distress region and the costly restructuring for high restructuring cost levels.
Figure 3 presents the value function of the bank from the perspectives of the shareholders
and the regulator for high restructuring cost levels, i.e., ξ > ξ∗.

[Insert Figure 3 Here]

The regulator predicts a relatively lower market value for the bank and hence sets a rela-
tively higher dividend payout threshold.

4.2 General Solution

In the general case, shareholders have the option to raise outside equity when the outside
investors are present and when it is profitable to do so, i.e., c < c1.

21 The outside financing
threshold (c1) is optimally chosen by the shareholders via value maximization. By contrast,
restructuring and dividend thresholds of the bank (c, c) and the initial capital (c0) are
assumed to be policy variables chosen by the regulator. In line with the previous case, we
start by solving the shareholders’ problem in the absence of dividend payout restrictions.
For c ∈ (c, c∗), the shareholders’ value function Vs(c | c) := Vs(c) satisfies the following
ODE:

rVs(c) = µV ′s (c) +
σ2

2
V ′′s (c) + λmax [Vs(c

∗)− (c∗ − c)− F − Vs(c), 0]

s.t. (4.14)

Vs(c) = 0, (4.15)

V ′s (c∗) = 1, (4.16)

V ′′s (c∗) = 0, (4.17)

Vs(c1) = Vs(c
∗)− (c∗ − c1)− F, (4.18)

21Note that the outside investors appear with a Poisson arrival rate λ.
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where the term in brackets on the right hand side of (4.14) represents the expected change
in the bank’s value obtained by raising new equity. In particular, the last term is the
product of the probability that the outside financiers arrive and the surplus from raising
capital to the target level. The last boundary condition is incorporated into the general
problem to reflect the fact that when the bank’s capital is at the level c1, the total surplus
from raising new equity is zero, thus the shareholders are indifferent between raising new
equity or not. Note that the upper bound for the fixed cost of issuance is F ∗ = Vs(c

∗)− c∗.
If F > F ∗, it is never optimal to issue new equity for the bank. Therefore, we concentrate
in the following analysis on those cases where F < F ∗. Under the circumstances, the
above problem has different solutions in 3 regions. More specifically, when the bank is
in the financial distress region (i.e., c ∈ (c, c1)), the bank raises outside funds as soon as
the outside financiers appear. On the other hand, when the bank is in the safe region
(i.e., c ∈ (c1, c

∗)), the shareholders never exercise the issuance option even if the investors
arrive since the surplus from raising outside equity is negative. Therefore, the last term
in (4.14) vanishes. Finally, when the firm has excess cash (i.e., c ∈ [c∗,∞)), the bank
distributes this amount as a dividend. Proposition 4.4 presents the closed form solutions
for the value function in different regions and the unique outside financing and dividend
thresholds chosen by the shareholders.

Proposition 4.4 The shareholders’ value function with an outside financing option is a
piecewise C2 function, which is given by

Vs(c) =



µλ
(r+λ)2

+ λ
r+λ

[
µ
r
+ c− c∗ − F

]
+ z1e

θ1(c−c1) + z2e
θ2(c−c1), c < c ≤ c1

−η22eη1(c−c
∗)+η21e

η2(c−c
∗)

η1η2(η1−η2) , c1 ≤ c < c∗

Vs(c
∗) + c− c∗, c ≥ c∗

(4.19)

where η1, η2 are defined as above, z1, z2 are constants22, Vs(c
∗) = µ/r, and

θ1,2 =
−µ±

√
µ2 + 2σ2(r + λ)

σ2
.

In addition, there exist unique constants y∗1 and y∗2 such that the dividend and outside
financing thresholds of the shareholders are given by

c1 = c+ y∗2,

c∗ = c+ y∗1 + y∗2.

22These coefficients are found uniquely by using the boundary conditions and derived in Appendix 2.A.
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Proposition 4.4 shows that the solution of the shareholders’ problem depends only on the
restructuring threshold. In addition, optimal thresholds for raising outside equity and
dividend payouts are linear functions of this threshold.
As a next step, we deal with the regulator’s welfare maximization problem to find the
optimal thresholds. As in the particular case, we assume that the restructuring and dividend
thresholds of the bank (c, c) and the initial capital (c0) are policy variables chosen by the
regulator so as to maximize welfare at each restructuring date:

W = max
c0,c,c

V (c0; c, c)− c0 +G(c0; c, c)[−ξ + c+W ].

However, the outside financing threshold (c1) is chosen by shareholders optimally and in-
corporated into welfare maximization. We start by solving G(c0; c, c) := G(c0)

23 which
satisfies in the region (c, c) the following ODE:

rG(c0) = µG′(c0) +
σ2

2
G′′(c0) + λ max [G(c)−G(c0), 0] (4.20)

s.t. G(c) = 1,

G′(c) = 0.

The last term in (4.20) reflects the impact of raising new equity on the stochastic discount
factor. We will also incorporate the continuity and smooth pasting properties of the function
G at c1 to obtain a closed-form solution. We solve the problem in two regions:

G(c0) =

{
G1(c0), c ≤ c0 ≤ c1,
G2(c0), c1 ≤ c0 ≤ c.

Proposition 4.5 The closed form formula for the function G(c0) is given as follows:

G(c0) =


λk

(r+λ)
+
(
k(q−θ2p)
θ1−θ2

)
e−θ1(c+y

∗
2−c0) +

(
k(q−θ1p)
θ2−θ1

)
e−θ2(c+y

∗
2−c0), c ≤ c0 ≤ c1

η2keη1(c0−c)−η1keη2(c0−c)
η2−η1 , c1 ≤ c0 ≤ c

where k =
1

λ
(r+λ)

+
(
q−θ2p
θ1−θ2

)
e−θ1y

∗
2 +

(
q−θ1p
θ2−θ1

)
e−θ2y

∗
2

,

p =
η2e

η1(c−c+y∗2) − η1eη2(c−c+y
∗
2)

η2 − η1
− λ

(r + λ)
,

q =
η2η1e

η1(c−c+y∗2) − η1η2eη2(c−c+y
∗
2)

η2 − η1
.

23For notational simplicity, we supress (c, c) when we refer to the function G.
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Secondly, we solve for V (c0; c, c) := V (c0) which satisfies the following ODE in the region
(c, c):

rV (c) = µV ′(c) +
σ2

2
V ′′(c) + λmax[V (c)− (c− c)− F − V (c), 0]

s.t. V (c) = 0,

V ′(c) = 1.

One should note that the super contact condition is not satisfied at c. This is because c is
chosen by the regulator, not by the shareholders. We solve the problem in two regions as
above:

V (c0) =

{
V1(c0), c ≤ c0 ≤ c1,
V2(c0), c1 ≤ c0 ≤ c.

Proposition 4.6 The closed form formula for the function V (c0) is given as follows:

V (c0) =


e1c0 + e2 + f1e

θ1c0 + f2e
θ2c0 , c ≤ c0 ≤ c1

(1−η2n)eη1(c0−c)−(1−η1n)eη2(c0−c)
(η1−η2) , c1 ≤ c0 ≤ c

where

n =
e−η2(c−c−y

∗
2) − e−η1(c−c−y∗2) + (η2 − η1)(c− c− y∗2 + F )

η1e−η2(c−c−y
∗
2) − η2e−η1(c−c−y

∗
2) + (η2 − η1)

,

e1 =
λ

r + λ
,

e2 =
µλ

(r + λ)2
+

λ

r + λ
(n− c− F ),

f1 =
(η1 − θ2)(1− η2n)eη1(c+y

∗
2−c) − (η2 − θ2)(1− η1n)eη2(c+y

∗
2−c)

(η1 − η2)(θ1 − θ2)eθ1(c+y
∗
2)

− [e1(1− θ2(c+ y∗2))− θ2e2]
(θ1 − θ2)eθ1(c+y

∗
2)

,

f2 =
(η1 − θ1)(1− η2n)eη1(c+y

∗
2−c) − (η2 − θ1)(1− η1n)eη2(c+y

∗
2−c)

(η1 − η2)(θ2 − θ1)eθ2(c+y
∗
2)

− [e1(1− θ1(c+ y∗2))− θ1e2]
(θ2 − θ1)eθ2(c+y

∗
2)

.

As a next step, we deal with the regulator’s welfare maximization problem to find the
optimal thresholds (c, c) and the initial capital (c0).

24 The problem is discussed in two

24The solution of the welfare maximization exists since the welfare function is continuous and bounded.
This is ensured by the properties of the functions V and G.

16



cases since the functions V and G are defined piecewise:

W =

{
maxc,c,c0 V1(c0; c, c)− c0 +G1(c0; c, c)[−ξ + c+W ], c ≤ c0 ≤ c1
maxc,c,c0 V2(c0; c, c)− c0 +G2(c0; c, c)[−ξ + c+W ], c1 ≤ c0 ≤ c

Intuitively, it is not reasonable for the regulator to start the bank in the financial distress
region. Therefore, we are interested in the solution in region 2, i.e., c0 ∈ [c1, c

∗]. The
welfare function in this region is denoted by W2. Hence, the regulator maximizes

W2 = max
c,c,c0

(1− η2n)eη1(c0−c) − (1− η1n)eη2(c0−c)

(η1 − η2)
− c0

+
η2ke

η1(c0−c) − η1keη2(c0−c)

η2 − η1
[−ξ + c+W2],

s.t. c ≥ c0 > c ≥ 0.

We therefore investigate the fixed point problem:

W2M = max
c0,c,c

H(c0, c, c,W2M ), (4.21)

where

H(c0, c, c,W2M ) ≡ (1− η2n)eη1(c0−c) − (1− η1n)eη2(c0−c)

(η1 − η2)
− c0

+
η2ke

η1(c0−c) − η1keη2(c0−c)

η2 − η1
[−ξ + c+W2M ]. (4.22)

Proposition 4.7 Let T(W2) = maxc0,c,cH(c0, c, c,W2). Then, T is a contraction mapping
and (4.21) has the unique fixed point W2M .

As in the particular case, we solve the fixed point problem iteratively and find the numer-
ical solutions of the initial capital, the restructuring and dividend thresholds. When the
voluntary recapitalization is possible, the optimal regulatory policies are found as follows:

1. The restructuring threshold is c = A−D.

2. The regulator chooses a (weakly) higher dividend threshold than the shareholders:
c ≥ c∗.

3. When the restructuring cost ξ is higher than a critical value ξ∗∗ > ξ∗ this inequality
is strict.
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Similar to the particular case, where raising outside equity is impossible, the regulator
always prefers to restructure the bank when the cash reserves fall below zero, or equivalently
when the bank’s capital drops to A-D. As the bank has a voluntary recapitalization option
upon the arrival of the outside investors, the bank may prevent itself from the financial
distress region by raising outside equity. This option and the complete transparency of the
bank’s capital might provide an incentive to the regulator to wait until the last moment.
The main difference from the particular case is that the critical restructuring cost level is
relatively higher in the general case. In particular, the regulator intervenes relatively later.
This result can be explained with the intuition that when the bank has the opportunity to
issue new equity, its ability to prevent itself from financial distress is relatively stronger.
Therefore, the intervention threshold of the regulator is relatively higher.
Figure 4 illustrates one example for the initial capital and the optimal dividend thresholds.

[Insert Figure 4 Here]

Comparison of Figures 2 and 4 shows that the divergence of the shareholders’ and the
regulator’s dividend thresholds is relatively smaller when we introduce an outside financing
option. Hence, the regulations are less stringent in the general case due to the relatively
higher probability of the bank’s self-prevention from the costly restructuring by raising
new equity. Another observation is that the regulator starts the bank with relatively lower
initial capital in the general case, which also shows that the opportunity of raising new
equity relaxes the regulations.
Finally, Figure 5 presents the value function of the bank for the shareholders and the
regulator in an environment with a voluntary recapitalization option of the bank.

[Insert Figure 5 Here]

5 Numerical Analysis

In this section, we investigate how the optimal thresholds change with respect to the model
parameters: expected profitability of the bank (µ), volatility of the cash flows (σ), cost
of holding cash (r), cost of raising outside equity (F ), and the arrival rate of the outside
investors (λ). As Figures 2 and 4 illustrate, the regulator intervenes when the restructuring
cost is higher than a certain threshold. Therefore, we provide figures for both low and high
restructuring cost regimes. We also present comparative statics for the critical restructuring
cost for the regulator.
We start our analysis with the particular case where there is no outside financing option.
Figures 6 and 7 illustrate the sensitivity of the optimal dividend thresholds and the initial
capital to the changes in the profitability of the bank, volatility of the cash flows, and the
cost of holding cash.
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[Insert Figure 6 Here]

When the restructuring cost is low, the regulator does not put any restrictions on the
dividend payouts of the bank. Thus, the optimal dividend thresholds of the shareholders and
the regulator coincide as shown in Figure 6. The most salient observation is that the optimal
dividend thresholds have an inverse U-shaped, left-skewed relationship with the profitability
of the bank’s operations. Obviously, when the bank is highly profitable, early dividend
payments can be expected since the risk of financial distress is low. However, when the bank
is scarcely profitable, the surprising result of early dividend payments could be explained
with the intuition that the potential losses from the restructuring is low.25 In addition, the
optimal dividend thresholds increase with the volatility of cash flows since the probability of
financial distress is high for banks with more volatile cash flows, which provides incentives
to these institutions to retain earnings and hold more capital for precautionary reasons.
Furthermore, the cost of holding cash is inversely related to the optimal thresholds. Hence,
when the internal cash holdings are very costly, the bank distributes them as a dividend
as soon as possible. The regulator starts the bank with an initial capital that is closer but
smaller than the optimal dividend threshold. Surprisingly, the difference is small when the
bank is more profitable and has less risky cash flows.26 Intuitively, the regulator starts the
bank with higher capital when the cost of holding cash is low.
Figure 7 provides the comparative statics for the high restructuring cost regime.

[Insert Figure 7 Here]

The main observation is that the optimal dividend thresholds of the shareholders and
the regulator diverge. In this case, the regulator forces the bank to retain earnings until
the capital reaches a higher threshold, which aims at preventing the bank from financial
distress. The difference between optimal dividend thresholds is high when the bank is less
profitable or the cash flows of the bank are more risky. Hence, the bank is subject to more
stringent regulations in these cases. Finally, the comparison of Figures 6 and 7 shows that
the regulator starts the bank with relatively higher capital in the high restructuring cost
regime to prevent the bank from costly restructuring.
Secondly, we move to the general case with the bank’s voluntary recapitalization option
and investigate the comparative statics for the initial capital, optimal dividend and the
outside financing thresholds. Figures 8 and 9 illustrate the low and high restructuring cost
regimes, respectively.

[Insert Figure 8 Here]

25See Rochet and Villeneuve [23] for more details.
26Note that the critical restructuring cost changes with the parameter values as given in Figures 10 and

11. We always take the low restructuring cost as half the amount of the evaluated critical restructuring
cost. This counter-intuitive result may change with different specifications of the restructuring cost values.
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[Insert Figure 9 Here]

In both regimes, the sensitivity of the optimal dividend thresholds with respect to the
profitability, cash flow volatility and the cost of holding cash parameters are quite similar to
the particular case. However, the optimal dividend thresholds are lower than the particular
case and the divergence of the shareholders’ and the regulator’s dividend thresholds is
not as big as in the particular case. These observations can be explained with the higher
ability of the bank to prevent itself from financial distress region due to the option to raise
outside equity. The novel implications arise with respect to the fixed cost of raising outside
equity and the arrival rate of the outside financiers, which reflect the level of credit market
frictions. The optimal level of capital is positively related with the fixed cost of raising
outside equity. Hence, when the outside financing is very costly, the bank retains earnings
and postpones dividend payouts to utilize the internal capital, which is relatively cheaper.
The bank distributes dividends earlier when the outside investors appear more frequently,
which can be explained with an easy access to the external market. Results for the outside
financing threshold are threefold. First, when the bank is highly profitable, has less volatile
cash flows, or the cost of holding cash is higher, the manager defers raising new equity since
the risk of financial distress is low. Second, the outside financing threshold is negatively
related with the fixed cost of raising new equity. In particular, the bank prefers to exercise
the outside financing option rarely and lumpy when it is very costly. Third, the bank waits
longer before raising new equity when the outside investors appear more frequently, i.e.,
the external capital supply is high, due to lower credit market frictions.
Finally, we consider how the restructuring decisions of the regulator change with respect
to the model parameters. Figures 10 and 11 illustrate the cases with or without voluntary
recapitalization option, respectively.

[Insert Figure 10 Here]

[Insert Figure 11 Here]

When there is no outside financing option, the critical restructuring cost for the regulator
increases with the profitability of the bank and decreases with the volatility of the cash
flows and the cost of holding cash. The intuition is that when the bank has higher and less
volatile cash flows, the regulator is relatively less likely to intervene since the risk of financial
distress is low. In addition, when the cost of holding cash is higher, the intervention region
of the regulator becomes larger. These results are still valid when we introduce an outside
financing option. However, the critical restructuring cost is relatively higher when the bank
has the option to raise new equity since the bank’s ability to recover itself from financial
distress is stronger with the outside financing opportunity. Finally, when the cost of raising
new equity is high or the outside investors appear rarely, the critical restructuring cost
is relatively lower since the capital supply frictions have a negative impact on the bank’s
situation, which forces the regulator to intervene earlier.

20



6 Conclusion

This paper investigates optimal resolution procedures and dividend policy for global sys-
temically important banks. For this purpose, we build a dynamic model that considers
the trade-off for regulators when to optimally step-in and restructure a bank and how to
optimally restrict the dividend payout policies of G-SIBs. Moreover, the model incorpo-
rates the interaction of regulatory intervention policies with the equity issuance decisions
of a bank. Importantly, the model features also supply side credit market frictions. This
allows us to analyze capital supply effects on the optimal dividend, equity issuance, and
restructuring policies of G-SIBs. The core financial friction in our model is that the bank
has to search for outside investors in order to raise new equity and the outside investors
only arrive at an uncertain (i.e., a stochastic) rate.
Given this modeling framework, the main suggestions that we derive for an optimal reg-
ulatory policy are twofold. First, the regulator intervenes by setting a capital threshold
under which the bank is restructured. In particular, every time the bank’s capital drops
to a certain nonnegative threshold, the shareholders are expropriated and the regulator
restructures the bank with the aim of a subsequent re-privatization. Second, the regulator
imposes dividend payout restrictions to G-SIBs, hinging on restructuring costs. Our analy-
sis shows that the regulator always restructures the bank when the cash reserves fall below
zero. In addition, when the restructuring costs are high, the regulator prohibits dividend
payouts to prevent a situation of, from a social welfare point of view, costly restructuring.
Another crucial result is that the bank postpones new equity issuance when the cost of
raising equity is high or when the capital supply is plentiful. Finally, when the bank is rel-
atively constrained with regard to external capital supply, the regulator intervenes earlier,
imposes relatively higher dividend thresholds to the bank, and initializes the bank with
higher capital.
Our simple stylized model is a first step to solve the implementation problem of the regula-
tors of the resolution procedures and to examine their potential adverse effects on sharehold-
ers’ behavior. Further extensions of our model with regard to other regulatory tools such
as contingent capital contracts or the introduction of moral hazard problem are interesting
avenues for future research.
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Appendix A

Proof of Proposition 4.1

Let A be the set of dividend strategies such that Ec
[∫ τ

0 e
−rtdLt

]
<∞ for all c ≥ c where τ

is the first time that the bank’s capital falls to c and Ec[.] denotes an expectation conditional
on the initial capital C0 = c.
The first step of the proof is to define the dynamic programming equation (DPE) for the
shareholders’ problem, which is given by using standard stochastic optimal control results
(see Fleming and Soner [10] for detail) as

min{rVs(c)− µV ′s (c)− σ2

2
V ′′s (c), V ′s (c)− 1} = 0 ∀c > c, (6.1)

where Vs(c) = 0.
The second step is to construct a solution (V̂s) to the system (4.1 - 4.4), which solves the
dynamic programming equation given by (6.1). Since we have a second order homogenous
ordinary differential equation (ODE), we conjecture the following solution form for c ∈
(c, c∗):

V̂s(c) = α1e
η1c + α2e

η2c,

where αi, i = 1, 2 are constants and η1,2 =
−µ±
√
µ2+2σ2r

σ2 are the roots of the characteristic
equation

σ2

2
η2 + µη − r = 0.

Then, by using boundary conditions (4.3) and (4.4), we have

α1η1e
η1c∗ + α2η2e

η2c∗ = 1,

α1η
2
1e
η1c∗ + α2η

2
2e
η2c∗ = 0.

Solving the above equations yields

α1 =
−η2

η1(η1 − η2)
e−η1c

∗
,

α2 =
η1

η2(η1 − η2)
e−η2c

∗
.

Finally, plugging α1 and α2 into the initial condition (4.2) provides the free boundary as

c∗ = c+
ln(

η22
η21

)

η1 − η2
.

Moreover, we conjecture that the function satisfies V̂s(c) = V̂s(c
∗) + c− c∗, for c ≥ c∗. Now,

we have to show that the constructed solution solves the DPE, i.e.,
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1. V̂ ′s (c) ≥ 1, ∀c ∈ (c, c∗) and

2. rV̂s(c)− µV̂ ′s (c)− σ2

2 V̂
′′
s (c) ≥ 0, ∀c ≥ c∗.

One can easily see that the conjectured function V̂s(c) is increasing (since V̂ ′s (c) ≥ 0) and
concave (since V̂ ′′s (c) ≤ 0) in the region (c, c∗) with V̂ ′s (c∗) = 1. Therefore, V̂ ′s (c) ≥ 1,
∀c ∈ (c, c∗]. Now, we verify the second condition: ∀c ≥ c∗,

rV̂s(c)− µV̂ ′s (c)− σ2

2
V̂ ′′s (c) = r[V̂s(c

∗) + c− c∗]− µ = r(c− c∗) ≥ 0

since V̂s(c
∗) = µ/r. Finally, we present the verification step.

Verification Theorem.

Let V̂s be the constructed function and Vs be the value function. Then,

V̂s(c) = Vs(c) = Ec
[∫ τ

0
e−rtdL∗t

]
,

where
L∗t = sup

{0≤s≤t}
{(c+ µs+ σBs − c∗)+}.

Proof.

(⇒:) Let L ∈ A be any admissible dividend strategy. Then, by Ito’s formula

d
[
e−rtV̂s(Ct)

]
= e−rt

[
−rV̂s(Ct) + µV̂ ′s (Ct) +

σ2

2
V̂ ′′s (Ct)

]
dt

+e−rtV̂ ′s (Ct)σdBt − e−rtV̂ ′s (Ct)dLt.

Integrating both sides from 0 to T ∧ τ yields

e−r(T∧τ)V̂s(CT∧τ ) = V̂s(c) +

∫ T∧τ

0
e−rt

[
−rV̂s(Ct) + µV̂ ′s (Ct) +

σ2

2
V̂ ′′s (Ct)︸ ︷︷ ︸

]
dt

≤ 0

+

∫ T∧τ

0
e−rtV̂ ′s (Ct)σdBt︸ ︷︷ ︸−

∫ T∧τ

0
e−rtV̂ ′s (Ct)dLt︸ ︷︷ ︸, (∗)

martingale ≥ 0

where the second term is non-positive and the last term is non-negative due to the DPE.
Then, taking the expectation of both sides and plugging 1 instead of V̂ ′s into the last term
provide the following inequality:

V̂s(c) ≥ Ec
[
e−r(T∧τ)V̂s(CT∧τ )

]
+ Ec

[∫ T∧τ

0
e−rtdLt

]
.
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Finally, letting T ↑ ∞ and using Fatou’s lemma we obtain

V̂s(c) ≥ Ec
[
e−rτ V̂s(Cτ )︸ ︷︷ ︸

]
+ lim
T→∞

Ec
[∫ T∧τ

0
e−rtdLt

]
= 0

≥ Ec
[∫ τ

0
e−rtdLt

]
= Vs(c)

(⇐:) In the second part of the proof we will show that all above inequalities turn into
equalities when we use L∗. More specifically, the second term in (*) vanishes for the dividend
strategy L∗, which keeps the bank’s capital in the region (c, c∗] where the expression in
brackets is zero due to the DPE. In addition, L∗ is only activated when Ct = c∗, so
V̂ ′s (Ct) = 1 for L∗. Then, we end up with

V̂s(c) = Ec
[
e−r(T∧τ)V̂s(C

∗
T∧τ )

]
+ Ec

[∫ T∧τ

0
e−rtdL∗t

]
.

When T →∞,

lim
T→∞

Ec
[
e−r(T∧τ)V̂s(C

∗
T∧τ )

]
= Ec

[
e−r(τ)V̂s(c)

]
= 0.

Finally, since the function Lt is positive, non-decreasing and bounded from below, letting
T →∞ and using the dominated convergence theorem provide

V̂s(c) = lim
T→∞

Ec
[∫ T∧τ

0
e−rtdL∗t

]
= Ec

[∫ τ

0
e−rtdL∗t

]
= Vs(c).

�

Proof of Proposition 4.2

We start with the function V (c0), which satisfies a second order homogenous ODE having
following solution form:

V (c0) = δ1e
η1c0 + δ2e

η2c0 ,

where η1,2 are defined as above. Then, by using initial and boundary conditions in (4.8)
we have

δ1 =
e(η2−η1)c

η1eη1c+(η2−η1)c − η2eη2c
,

δ2 =
1

η2eη2c − η1eη1c+(η2−η1)c
.
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Plugging δi, i = 1, 2, into the conjectured solution form provides

V (c0) =
e(η2−η1)c+η1c0 − eη2c0
η1eη1c+(η2−η1)c − η2eη2c

=
eη2(c0−c) − eη1(c0−c)

η2eη2(c−c) − η1eη1(c−c)
,

where the last equality holds by multiplying and dividing the right hand side of the previous
equality by e−η2c.
Secondly, the function G(c0) has the same solution form:

G(c0) = ς1e
η1c0 + ς2e

η2c0 .

Similarly, using the initial and boundary conditions in (4.9) yields

ς1 =
η1e
−η1c

η1e(η2−η1)c − η2e(η2−η1)c
,

ς2 =
−η2e(η2−η1)c−η1c

η1e(η2−η1)c − η2e(η2−η1)c
.

Hence, the function G(.) becomes

G(c0) =
−η2e(η2−η1)c+η1(c0−c) − η1eη2c0−η1c

η1e(η2−η1)c − η2e(η2−η1)c

=
−η2eη1(c0−c) + η1e

η2(c0−c)

η1e−η2(c−c) − η2e−η1(c−c)
,

where the last equality is satisfied by multiplying and dividing the right hand side of the
previous equality by eη2c−η1c. �

Proof of Proposition 4.3

Consider the complete metric space (R, d) where

d(W1,W2) = |W1 −W2|, ∀W1,W2 ∈ R.

We will show that the real valued function

T(W ) = max
c0,c,c

H(c0, c, c,W ) = max
c0,c,c

V (c0; c, c)− c0 +G(c0; c, c)[−ξ + c+W ]

is a contraction mapping in (R, d), i.e. ∃k < 1 such that for all W1,W2 ∈ R we have

|T(W2)− T(W1)| ≤ k|W2 −W1|.
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We start by noting that the function G(c0; c, c) = E[e−rτ ] is the stochastic discount factor
with a range [0, 1]. Let W1 < W2. The function T(W ) is increasing in W since

∂T(W )

∂W
= max

c0,c,c
G(c0; c, c) ≥ 0.

Then, we have T(W1) ≤ T(W2). In addition,

T(W2) = max
c0,c,c

H(c0, c, c,W2)

= max
c0,c,c

V (c0; c, c)− c0 +G(c0; c, c)[−ξ + c+W2]

= max
c0,c,c

V (c0; c, c)− c0 +G(c0; c, c)[−ξ + c+ (W2 −W1) +W1]

≤ max
c0,c,c

V (c0; c, c)− c0 +G(c0; c, c)[−ξ + c+W1]

+ max
c0,c,c

(W2 −W1)G(c0; c, c)

= T(W1) + (W2 −W1) max
c0,c,c

G(c0; c, c),

where the inequality follows from a basic math inequality:

max
c0,c,c
{f1(c0, c, c) + f2(c0, c, c)} ≤ max

c0,c,c
{f1(c0, c, c)}+ max

c0,c,c
{f2(c0, c, c)},

for all real valued functions f and g. Then, using the increasing property of T(W ) yields

0 ≤ T(W2)− T(W1) ≤ (W2 −W1) max
c0,c,c

G(c0; c, c).

Intuitively, the regulator never starts the bank at zero cash level. Therefore, G(c0; c, c) < 1
for all c0, c, c. Hence, defining k := maxc0,c,cG(c0; c, c) < 1 yields

T(W2)− T(W1) ≤ k(W2 −W1),

or equivalently,
|T(W2)− T(W1)| ≤ k|W2 −W1|,

since the both sides of the previous inequality are positive. One can easily show the above
inequality for W2 < W1 by using exactly the same steps. Therefore, T is a contraction
mapping and has a unique fixed point in R by the Banach Fixed Point Theorem. �

Proof of Proposition 4.4
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In this proof, we adapt the methodology given in Hugonnier et al. [12] to our setup. Let
A be the set of dividend and financing strategies such that

Ec
[∫ τ

0
e−rt(dLt + ftdNt)

]
<∞, ∀c ≥ c

where τ is the first time that the bank’s capital falls to c and Ec[.] denotes an expectation
conditional on the initial capital C0− = c. We define the following operators:

Lϕ(c) := rϕ(c)− µϕ′(c)− σ2

2
ϕ′′(c),

Fϕ(c) := max
f≥0

λ{ϕ(c+ f)− ϕ(c)− f − 1{f≥0}F}.

which will be used throughout the proof.

STEP 1
First, we define the dynamic programming equation (DPE) in the general case with outside
financing option by using the singular stochastic control theory (see Fleming and Soner [10]
for detail):

min{LVs(c)−FVs(c), V ′s (c)− 1} = 0, ∀c > c (6.2)

with Vs(c) = 0.

STEP 2
Second, we construct a solution (V̂s) to the system (4.14 - 4.18). Our conjecture is that the
optimal dividend and financing policies are of threshold forms. Let d ≥ c be a fixed target
capital level for the bank and V̂s(c) := V̂s(c; d) denote the value of a bank that follows
the barrier strategy d. We will construct the solution for any target level d, then we will
show that there exists a unique target capital c∗ satisfying V̂s(c; c

∗) = 0. For the notational
simplicity, we supress d when we refer to the conjectured function V̂s.
V̂s(c) is a piecewise-defined function as follows:

V̂s(c) =


V̂s1(c), c ≤ c ≤ c1
V̂s2(c), c1 ≤ c ≤ d
V̂s2(c) + c− d, c ≥ d

where the functions V̂s1(c) and V̂s2(c) represent the constructed solutions in the financial
distress region and the safe region, respectively. In the second region, V̂s2(c) solves

rV̂s2(c) = µV̂ ′s2(c) +
σ2

2
V̂ ′′s2(c) (6.3)

s.t.

V̂s2(c1) = V̂s2(d)− (d− c1)− F,
V̂ ′s2(d) = 1,

V̂ ′′s2(d) = 0.
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The closed form solution for V̂s2 is the same as the value function in the particular case:

V̂s2(c) =
−η22eη1(c−d) + η21e

η2(c−d)

η1η2(η1 − η2)
.

On the other hand, V̂s1(c) solves

(r + λ)V̂s1(c) = µV̂ ′s1(c) +
σ2

2
V̂ ′′s1(c) + λ

(
V̂s2(d)− (d− c)− F

)
(6.4)

s.t. V̂s1(c) = 0,

V̂s1(c1) = V̂s2(c1) = V̂s2(d)− (d− c1)− F,
V̂ ′s1(c1) = V̂ ′s2(c1).

The general solution form for V̂s1(c) is given as

V̂s1(c) = αc+ β︸ ︷︷ ︸+ γ1e
θ1c + γ2e

θ2c︸ ︷︷ ︸,
V̂s1p(c) V̂s1h(c)

where V̂s1p(c) is the particular solution of (6.4), V̂s1h(c) is the solution of the homogenous

part of it, and θ1,2 =
−µ±
√
µ2+2σ2(r+λ)

σ2
27 are the roots of the characteristic equation

σ2

2
θ2 + µθ − (r + λ) = 0.

Plugging V̂s1p(c) into (6.4) and equating the constants and the coefficients of c provide

α =
λ

r + λ
,

β =
µλ

(r + λ)2
+

λ

r + λ

[µ
r
− d− F

]
.

We will use the initial and boundary conditions to find γ1, γ2, c1, d:

V̂s1(c1) ≡ αc1 + β + γ1e
θ1c1 + γ2e

θ2c1 =
µ

r
− d− F + c1

=
η21e

η2(c1−d) − η22eη1(c1−d)

η1η2(η1 − η2)
≡ V2(c1),

where the first and second equalities follow from the definition of c1 and the continuity of
V̂s, respectively. Define y1 := d− c1 and

ψ(y1) :=
η21e
−η2y1 − η22e−η1y1
η1η2(η1 − η2)

+ y1 −
µ

r
+ F,

27θ1 > 0 > θ2 and |θ2| > |θ1|.
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where ψ(0) = F > 0.28 Moreover,

ψ′(y1) =
η1η

2
2e
−η1y1 − η2η21e−η2y1
η1η2(η1 − η2)

+ 1 ⇒ ψ′(0) = 0 and ψ′(y1) < 0, ∀y1 > 0.

ψ′′(y1) =
η1η2
η1 − η2

[e−η2y1 − e−η1y1 ]

⇒ ψ′′(0) = 0, ψ′′(y1) < 0, ∀y1 and lim
y1→∞

ψ(y1) = −∞.

Thus,
∃! y∗1 > 0 s.t. ψ(y∗1) = 0.

Therefore, c1 is monotone increasing in d, i.e., d = c1 +y∗1. In addition, the smooth pasting
condition at c1 provides

V̂ ′s1(c1) = α+ θ1γ1e
θ1c1 + θ2γ2e

θ2c1

=
η1e

η2(c1−d) − η2eη1(c1−d)

η1 − η2
= V̂ ′s2(c1).

Define z1 := γ1e
θ1c1 and z2 := γ2e

θ2c1 . Then, with the help of boundary conditions, we
obtain a system of linear equations of (z1, z2) as follows:29

z1 + z2 +
µλ

(r + λ)2
− r

r + λ

(µ
r
− F − y∗1

)
= 0,

θ1z1 + θ2z2 −
η1e
−η2y∗1 − η2e−η1y

∗
1

η1 − η2
+

λ

r + λ
= 0,

where z1 and z2 can be solved uniquely from the above equations as

z1 =
b− θ2a
θ1 − θ2

,

z2 =
b− θ1a
θ2 − θ1

,

where

a =
r

r + λ
[
µ

r
− F − y∗1]− µλ

(r + λ)2
,

b =
η1e
−η2y∗1 − η2e−η1y

∗
1

η1 − η2
− λ

r + λ
.

28We use η1η2 = − 2r
σ2 and η1 + η2 = − 2µ

σ2 .
29Note that z1 and z2 are independent of d.
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Finally, by using the initial condition we have

z1e
θ1(c−c1) + z2e

θ2(c−c1) +
µλ

(r + λ)2
+

λ

r + λ

(µ
r
− y∗1 − c1 + c− F

)
= 0.

Define y2 := c1 − c and

H(y2) := z1e
−θ1y2 + z2e

−θ2y2 +
µλ

(r + λ)2
+

λ

r + λ

(µ
r
− y∗1 − y2 − F

)
.

Next, we investigate the existence and uniqueness of the root of H(y2). By the monotone
increasing property of Vs1(c)

30 we have

V ′s1(c) = α+ γ1θ1e
θ1c + γ2θ2e

θ2c > 0, ∀ c ∈ [c, c1],

where α > 0, θ1 > 0 > θ2 and |θ1| < |θ2|. Using this property, ∀ y2 ≥ 0 we have

H ′(y2) : = −θ1z1e−θ1y2 − θ2z2e−θ2y2 −
λ

r + λ

= −θ1γ1eθ1c − θ2γ2eθ2c − α = −V ′s1(c) < 0,

where limy2→∞H
′(y2) = −∞. Thus, H(y2) is monotone decreasing. Moreover, since

F < F ∗ = µ
r − d, we have

H(0) =
µ

r
− y∗1 − F = Vs1(c1) = Vs2(c1) > 0,

lim
y2→∞

H(y2) = −∞,

which guarantee that
∃! y∗2 s.t. H(y∗2) = 0.

Therefore, the target capital level (d) is uniquely defined as a function of the restructuring
threshold (c), i.e., d = c+ y∗1 + y∗2.

STEP 3
The next step is to show that the constructed solution (V̂s) solves the DPE (6.2) i.e.,

1. V̂ ′s (c) ≥ 1, ∀c ≥ c and

2. LV̂s(c)−F V̂s(c) ≥ 0, ∀c ≥ c.
We will first show that the function V̂s(c) is increasing and concave in the region [c, d],
which will be useful to prove the above two properties.

30We’ll prove this property in the next step of the proof.
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The function V̂s2 is increasing and concave in the region [c1, d] since

V̂ ′s2(c) =
η1e

η2(c−d) − η2e−η1(c−d)

η1 − η2
> 1, (= 1 when c = d)

V̂ ′′s2(c) =
η1η2e

η2(c−d) − η1η2e−η1(c−d)

η1 − η2
< 0 (= 0 when c = d),

by using η1 > 0 > η2 and |η2| > |η1|.
We need to use the following lemmas to show that V̂s1 is increasing and concave in the
region [c, c1].

Lemma 2.A.1. Consider a function S which is a solution to

− LS(c) + ϕ(c) = 0 (6.5)

for some ϕ. Then, S does not have negative local minima if ϕ(c) ≥ 0 and does not have
positive local maxima if ϕ(c) ≤ 0.

Proof. Let ϕ(c) ≥ 0. At the local minimum, S′(c) = 0 and S′′(c) ≥ 0. Then, it folllows
from (6.5) that the local minima are non-negative. Similarly, when ϕ(c) ≤ 0, S′(c) = 0 and
S′′(c) ≤ 0 at local maximum. Then, (6.5) implies that the local minima are non-positive.

Lemma 2.A.2. Consider a function S which is a solution to (6.5) for some ϕ(c) ≤ 0. In
addition, S′(c̃) ≤ 0, S(c̃) ≥ 0 and |S(c̃)|+ |S′(c̃)|+ |ϕ(c̃)| > 0 for c̃ > c. Then, S(c) > 0 and
S′(c) < 0 for all c < c < c̃.

Proof. We first prove the decreasing property. Let S′(c) be not always negative for
c < c < c̃ and let y < c̃ be the largest value at which S′(c) changes sign. Then y is a
positive local maximum, which contradicts the fact that S does not have a positive local
maxima since ϕ(c) ≤ 0 as given in Lemma 2.A.1. Therefore, S is decreasing for c ∈ (c, c̃).
Secondly, since S(c̃) ≥ 0 and S is decreasing, S(c) > 0 for all c < c < c̃.

Lemma 2.A.3. Consider a function S which is a solution to (6.5) for some ϕ such that
ϕ′(c) ≤ 0. In addition, S′′(c̃) ≤ 0, S′(c̃) ≥ 0 and |S′(c̃)| + |S′′(c̃)| + |ϕ′(c̃)| > 0 for c̃ > c.
Then, S′(c) > 0 and S′′(c) < 0 for all c < c < c̃.

Proof. Differentiating (6.5) yields j = S′ satisfies −Lj(c) + ϕ′(c) = 0. Then, we complete
the proof by using lemma 2.A.2.
Now, the first and second derivatives of the function V̂s1 at c1 satisfy

V̂ ′s1(c1) = V̂ ′s2(c1) > 1 (by smooth pasting at c1),
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and

V̂ ′′s1(c1) = θ21z1 + θ22z2

= θ21

(
b− θ2a
θ1 − θ2

)
+ θ22

(
b− θ1a
θ2 − θ1

)
= b(θ2 + θ1)− aθ1θ2

=
−2

σ2
[µb− a(r + λ)]

=
−2

σ2

µ
η1e−η2y∗1 − η2e−η1y∗1

η1 − η2︸ ︷︷ ︸−1

+ r(F + y∗1)


> 1

< 0.

Define

S(c) := V̂s1(c)−
λc

r + λ
− µλ

(r + λ)2
− λ

r + λ

[µ
r
− d− F

]
,

which solves−LS(c)+ϕ(c) = 0 where ϕ(c) := −λS(c). In addition, S′(c1) = V̂ ′s1(c1)− λ
r+λ >

0 and S′′(c1) = V̂ ′′s1(c1) < 0. Therefore, Lemma 2.A.3 yields

S′(c) > 0 and S′′(c) < 0 ∀c < c1,

which implies

V̂ ′s1(c) = S′(c) +
λ

r + λ
> 0 and V̂ ′′s1(c) = S′′(c) < 0, ∀c < c1.

Hence, V̂s1 is increasing and concave in the region [c, c1].
Having proved that the function V̂s is increasing and concave for c ∈ [c, d] and using the
smooth pasting condition at d provide V̂ ′s (c) ≥ 1, ∀c ≥ c. Moreover, ∀c ≥ c

LV̂s(c)−F V̂s(c) = (LV̂s(c)−F V̂s(c))1{c<c<d}︸ ︷︷ ︸+(LV̂s(c)−F V̂s(c))1{c≥d}

= 0 (since V̂s solves (4.14))

= (rV̂s(c)− µ)1{c≥d}

= (r[
µ

r
+ c− d]− µ)1{c≥d}

= r(c− d) ≥ 0.

Therefore, the constructed function V̂s solves the dynamic programming equation.
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STEP 4
Next, we will show that there exists a unique target level c∗ satisfying V̂s(c; c

∗) = 0. For this
purpose, we first need to prove that V̂s(c; d) is strictly monotone decreasing with respect
to the target level d. Let d1 < d2 and n(c) := V̂s(c; d1)− V̂s(c; d2). Then, we have

−Ln(c)− λ(n(c) + d1 − d2) = 0,

and n′(d1) = 1− V̂ ′s (d1; d2) < 0, n′′(d1) = −V̂ ′′s (d1; d2) ≥ 0. Then, a direct modification of
Lemma A.2.3 provides that n is monotone decreasing for all c < d1. Finally,

n(d1) = V̂s(d1; d1)− V̂s(d1; d2)

= V̂s(d1; d1)− V̂s(d2; d2) +

∫ d2

d1

V̂ ′s (c; d2)dc

≥ V̂s(d1; d1)− V̂s(d2; d2) + (d2 − d1)
= d2 − d1 > 0,

where the inequality follows from the fact that V̂ ′s (c; d2) > 1 for c ∈ [d1, d2]. Hence, V̂s(c; d)
is monotone decreasing in d. Moreover, V̂s(c; c) = µ

r > 0 and V̂s(c;∞) < 0 which imply

that V̂s(c; c
∗) = 0 has a unique solution.

STEP 5
Finally, we proceed with the verification step.

Verification Theorem.
Let V̂s be the constructed function and Vs be the value function. Then,

V̂s(c) = Vs(c) = Ec
[∫ τ

0
e−rt(dL∗t − (f∗t + 1{f∗t >0}F )dNt)

]
,

where L∗t = sup
{0≤s≤t}

{(hs − c∗)+},

f∗t = (c∗ − Ct)+,
dCt = µdt+ σdBt − dL∗t + f∗t−dNt, C0− = c,

dht = µdt+ σdBt + (c∗ − ht−)+dNt.

Proof.
(⇒:) Let (L, f) ∈ A be any admissible dividend and financing strategies. Define the process

Xt = e−rtV̂s(Ct) +

∫ t

0+
e−ru(dLu − (fu− + 1{fu−>0}F )dNu).
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Applying Ito’s formula for semimartingales to Xt yields31

dXt = e−rt[−rV̂s(Ct−) + µV̂ ′s (Ct−) +
σ2

2
V̂ ′′s (Ct−)]dt

+e−rtV̂ ′s (Ct−)σdBt − e−rtV̂ ′s (Ct−)[dLt − ft−dNt]

+e−rt∆V̂s(Ct−)− e−rtV̂ ′s (Ct−)∆Ct− + e−rt(dLt − (ft− + 1{ft−>0}F )dNt),

where

∆V̂s(Ct−) = [V̂s(Ct− + ft−)− V̂s(Ct−)]dNt + V̂s(Ct−)− V̂s(Ct− −∆Lt),

∆Ct− = ∆Lt + ft−dNt,

∆Lt = Lt − Lt−, (jump component of Lt)

Lct = Lt − Σs≤t∆Ls. (continuous part of Lt)

Then, plugging the above definitions into dXt and compensating the Poisson processes
result in

dXt = dQt − e−rtdPt,

where

dQt = e−rtV̂ ′s (Ct−)σdBt + e−rt[V̂s(Ct− + ft−)− V̂s(Ct−)− (ft− + 1{ft−>0}F )](dNt − λdt)

is a local martingale (since the first term is a Brownian motion and the second term is a
compensated Poisson process) and

dPt = [F V̂s(Ct−)− λ(V̂s(Ct− + ft−)− V̂s(Ct−)− (ft− + 1{ft−>0}F ))]dt

+(V̂ ′s (Ct−)− 1)dLct + [∆Lt + V̂s(Ct−)− V̂s(Ct− −∆Lt)]

is a non-decreasing process since the drift is positive from the definition of F and V̂ ′s (Ct−) ≥
1, for all Ct ≥ c. Hence, X is a local supermartingale by the Doob-Meyer decomposition.
Moreover, the stopped sequence

Jt := Xt∧τ ≥ −
∫ τ

0+
e−rufu−dNu

is a supermartingale since the admissible dividend strategy ft is intregrable and constructs

31Note that the function V̂s(Ct) is C2 everywhere but at c1. However, the Lebesque measure of t, for
which Ct = c1, is zero. Hence, the value of V̂ ′′s (c1) matters little in the follow-up whatever set to be.
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a lower bound for Jt. Finally,

V̂s(c) = V̂s(C0−) = V̂s(C0)−∆V̂s(C0) = J0 −∆V̂s(C0) ≥ Ec[Jτ ]−∆V̂s(C0)

= Ec
[
e−rτ V̂s(Cτ ) +

∫ τ

0+
e−rt(dLt − (ft− + 1{ft−>0}F )dNt)

]
−∆V̂s(C0)

= Ec
[∫ τ

0
e−rt(dLt − (ft− + 1{ft−>0}F )dNt)

]
−∆V̂s(C0)−∆L0

≥ Ec
[∫ τ

0
e−rt(dLt − (ft− + 1{ft−>0}F )dNt)

]
,

where the third equality is due to V̂s(C0−) = X0 = X0∧τ = J0, the first inequality follows
from the optional sampling theorem for supermartingales, the fifth equality results from
V̂s(Cτ ) = 0, and the second inequality comes from the fact that V̂ ′s (c) ≥ 1 for all c ≥
c. Finally, taking the supremum of both sides over all admissible dividend and issuance
strategies yields

V̂s(c) ≥ sup
{L,f}∈A

Ec
[∫ τ

0
e−rt(dLt − (ft− + 1{ft−>0}F )dNt)

]
= Vs(c).

(⇐:) In the second part of the proof, we will show that all above inequalities turn to
equalities when we use (L∗, f∗). First, let’s prove the admissibility of conjectured policies:

Ec
[∫ ∞

0
e−rtf∗t dNt

]
≤ Ec

[∫ ∞
0

e−rtc∗dNt

]
=
λc∗

r
<∞,

where the inequality results from the definition of f∗ and the equality comes by using the
mean of the Poisson process (which is λ in our case). In addition, using the cash reserves
dynamics we obtain

Ec
[∫ T

0
e−rtdL∗t

]
= c+ Ec

[∫ T

0
e−rtµdt+

∫ T

0
e−rtf∗t−dNt

]
.

Then, letting T →∞, using the Fatou’s lemma and the upper bound for f∗t yield

lim
T→∞

Ec
[∫ T

0
e−rtdL∗t

]
≤ Ec

[∫ ∞
0

e−rtdL∗t

]
≤ c+ Ec

[∫ ∞
0

e−rtµdt+

∫ ∞
0

e−rtf∗t−dNt

]
≤ c+

1

r
(µ+ λc∗),

which implies that (L∗, f∗) ∈ A. Now, consider the process

Xt = e−r(t∧τ)V̂s(Ct∧τ ) +

∫ t∧τ

0+
e−ru(dL∗u − (f∗u− + 1{f∗u−>0}F )dNu).

37



Then, if we apply Ito’s formula for semimartingales to Xt with the optimal policies (L∗, f∗),
the first term in the dynamics of dPt (defined in the first part of the proof) vanishes since
the optimal issuance policy maximizes F . The second and third terms also disappear since
the optimal dividend strategy L∗ is only activated when Ct = c∗, hence V̂ ′s (Ct) = 1 for L∗.
Therefore, dXt = dQt is a local martingale. Furthermore, for any stopping time τ we have

|Xτ | < |V̂s(c∗)|+
∫ ∞
0

e−rt(dL∗t + f∗t−dNt),

since V̂s is increasing, the optimal policies are admissible and they keep the bank’s capital
in the region (c, c∗] for all t ≥ 0. Hence, Xt is uniformly integrable since it is bounded from
below and above. Finally,

V̂s(c) = X0− = X0 −∆X0 = X0 + ∆L∗0 = Ec[Xτ ] + ∆L∗0

= Ec
[
e−rτ V̂s(Cτ ) +

∫ τ

0+
e−rt(dL∗t − (f∗t− + 1{f∗t−>0}F )dNt)

]
+ ∆L∗0

= Ec
[∫ τ

0
e−rt(dL∗t − (f∗t− + 1{f∗t−>0}F )dNt)

]
= Vs(c),

where the fourth and fifth equalities follow from the martingale property and the definition
of X, respectively. �

Proof of Proposition 4.5

We first solve for the function G2(c0) which satisfies the following ODE:

rG2(c0) = µG′2(c0) +
σ2

2
G′′2(c0)

s.t. G2(c1) = G1(c1),

G′2(c1) = G′1(c1),

G′2(c) = 0.

General solution form for the above ODE is

G2(c0) = a1e
η1c0 + a2e

η2c0 .

Define G2(c) := k. This definition and the last boundary condition are used to determine
a1 and a2 as follows:

G2(c) = k ⇒ a1e
η1c + a2e

η2c = k,

G′2(c) = 0 ⇒ a1η1e
η1c + a2η2e

η2c = 0.
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By solving the above equations, a1 and a2 are found as follows:

a1 =
η2k

η2 − η1
e−η1c,

a2 =
−η1k
η2 − η1

e−η2c.

Finally, G2(c) is given as

G2(c0) =
η2ke

η1(c0−c) − η1keη2(c0−c)

η2 − η1
,

where k has to be determined. Secondly, we look at the solution of G1(c0), which satisfies
the following second order non-homogenous ODE:

(r + λ)G1(c) = µG′1(c) +
σ2

2
G′′1(c) + λG2(c)

s.t. G1(c) = 1,

G1(c1) = G2(c1),

G′1(c1) = G′2(c1),

which has the following solution form:

G1(c0) = d1c0 + d2︸ ︷︷ ︸+ b1e
θ1c0 + b2e

θ2c0︸ ︷︷ ︸,
G1p(c0) G1h(c0)

where G1p(c0) is the particular solution of the whole ODE and G1h(c0) is the solution of the

homogenous part with θ1,2 =
−µ±
√
µ2+2σ2(r+λ)

σ2 .32 Plugging G1p into the ODE and setting
the coefficients of c0 and the constants yield

d1 = 0,

d2 =
λk

r + λ
.

Now, we use the initial condition, the continuity and smooth pasting properties at c1 to
find b1, b2, k:

b1e
θ1c + b2e

θ2c +
λk

r + λ
= 1,

b1e
θ1(c+y∗2) + b2e

θ2(c+y∗2) = kp,

b1θ1e
θ1(c+y∗2) + b2θ2e

θ2(c+y∗2) = kq,

32 θ1 > 0 > θ2 and |θ2| > |θ1|.
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where

p := η2e
η1(c−c+y

∗
2)−η1eη2(c−c+y

∗
2)

η2−η1 − λ
(r+λ) and q := η2η1e

η1(c−c+y
∗
2)−η1η2eη2(c−c+y

∗
2)

η2−η1 .

Solving above system of equations yields the followings:

k =
1

λ
(r+λ) +

(
q−θ2p
θ1−θ2

)
e−θ1y

∗
2 +

(
q−θ1p
θ2−θ1

)
e−θ2y

∗
2

,

b1 =

(
k(q − θ2p)
θ1 − θ2

)
e−θ1(c+y

∗
2),

b2 =

(
k(q − θ1p)
θ2 − θ1

)
e−θ2(c+y

∗
2).

�

Proof of Proposition 4.6

We start by solving for the function V2(c0), which satisfies the following ODE:

rV2(c0) = µV ′2(c0) +
σ2

2
V ′′2 (c0)

s.t. V2(c1) = V2(c)− (c− c1)− F,
V ′2(c) = 1.

The general solution form for the above ODE is

V2(c0) = ζ1e
η1c0 + ζ2e

η2c0 .

Define V2(c) := n. This definition and the last boundary condition are used to determine
ζ1 and ζ2 as follows:

V2(c) = n ⇒ ζ1e
η1c + ζ2e

η2c = n,

V ′2(c) = 1 ⇒ ζ1η1e
η1c + ζ2η2e

η2c = 1.

By solving the above equations, ζ1 and ζ2 are obtained as follows:

ζ1 =
1− η2n
η1 − η2

e−η1c,

ζ2 =
1− η1n
η2 − η1

e−η2c.

Then, by plugging ζi, i = 1, 2, into the initial condition, n is found easily as given in the
proposition. Secondly, we consider the solution of V1(c0), which satisfies a second order
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non-homogenous ODE having the following solution form:

V1(c0) = e1c0 + e2︸ ︷︷ ︸+ f1e
θ1c0 + f2e

θ2c0︸ ︷︷ ︸,
V1p(c0) V1h(c0)

where V1p(c0) is the particular solution of the whole ODE and V1h(c0) is the solution of the
homogenous part. Plugging V1p into the ODE and equalizing the coefficients of c0 and the
constants yield

e1 =
λ

r + λ
,

e2 =
µλ

(r + λ)2
+

λ

r + λ
(n− c− F ).

Remaining steps of the proof are exactly the same as we do above. In particular, we solve
for the initial condition, the continuity and smooth pasting equations at c1 and obtain
f1, f2, n as given in the proposition. �

Proof of Proposition 4.7

The proof is straightforward by applying the same steps in the proof of Proposition 4.3 since
in the general case with outside financing option the function G(c0; c, c) is still defined in
the range [0, 1].

41



Appendix B

Figure 2: Optimal Thresholds without Voluntary Recapitalizations.

Figure 2 shows how the initial capital (c0) and the optimal dividend thresholds for the share-
holders (c∗) and the regulator (c) vary with the restructuring cost ξ. Baseline parameters
are µ = 0.1, σ = 0.1, and r = 6%.

Figure 3: Value Function of the Bank without Voluntary Recapitalizations.

Figure 3 shows the value function of the bank for the cases, in which the dividend threshold
is chosen by the shareholders (Vs(c)) or by the regulator (V (c)). Baseline parameters are
µ = 0.1, σ = 0.1, r = 6%, and ξ = 2 > ξ∗ = 1.31.
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Figure 4: Optimal Thresholds with Voluntary Recapitalizations.

Figure 4 shows how the initial capital (c0) and the optimal dividend thresholds for the share-
holders (c∗) and the regulator (c) vary with the restructuring cost ξ. Baseline parameters
are µ = 0.1, σ = 0.1, r = 6%, F = 0.025, and λ = 6.

Figure 5: Value Function of the Bank with Voluntary Recapitalizations.

Figure 5 shows the value functions of the bank for the cases in which the dividend threshold
is chosen by the shareholders (Vs(c)) or by the regulator (V (c)). Baseline parameters are
µ = 0.1, σ = 0.1, r = 6%, F = 0.025, λ = 6, and ξ = 2 > ξ∗∗ = 1.41.
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Figure 6: Optimal Thresholds without Voluntary Recapitalizations in the Low Restructur-
ing Cost Regime.

Figure 6 shows how the initial capital (c0) and the optimal dividend thresholds for the
shareholders (c∗) and the regulator (c) vary with the profitability of the bank (µ), volatility
of the cash flows (σ), and cost of holding cash (r) in the case, where raising outside equity
is infinitely costly and the restructuring cost is low (i.e. ξ < ξ∗).
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Figure 7: Optimal Thresholds without Voluntary Recapitalizations in the High Restruc-
turing Cost Regime.

Figure 7 shows how the initial capital (c0) and the optimal dividend thresholds for the
shareholders (c∗) and the regulator (c) vary with the profitability of the bank (µ), volatility
of the cash flows (σ), and cost of holding cash (r) in the case, where raising outside equity
is infinitely costly and the restructuring cost is high (i.e. ξ > ξ∗).
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Figure 8: Optimal Thresholds with Voluntary Recapitalizations in the Low Restructuring
Cost Regime.

Figure 8 shows how the initial capital (c0), optimal equity issuance threshold (c1), and
optimal dividend thresholds for the shareholders (c∗) and the regulator (c) vary with the
profitability of the bank (µ), volatility of the cash flows (σ), cost of holding cash (r), cost
of raising outside equity (F ), and arrival rate of the outside investors (λ) in the case, where
the restructuring cost is low (i.e. ξ < ξ∗∗). In each plots, the restructuring cost is always
taken as half of the critical restructuring cost.

46



Figure 9: Optimal Thresholds with Voluntary Recapitalizations in the High Restructuring
Cost Regime.

Figure 9 shows how the initial capital (c0), optimal equity issuance threshold (c1), and
optimal dividend thresholds for the shareholders (c∗) and the regulator (c) vary with the
profitability of the bank (µ), volatility of the cash flows (σ), cost of holding cash (r), cost
of raising outside equity (F ), and arrival rate of the outside investors (λ) in the case, where
the restructuring cost is high (i.e. ξ > ξ∗∗). In each plots, the restructuring cost is always
taken as two times of the critical restructuring cost.
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Figure 10: Critical Restructuring Cost without Voluntary Recapitalizations.

Figure 10 shows the sensitivity of the critical restructuring cost with respect to the expected
profitability of the bank (µ), volatility of the cash flows (σ), and cost of holding cash (r)
in the case without voluntary recapitalizations.
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Figure 11: Critical Restructuring Cost with Voluntary Recapitalizations.

Figure 11 shows the sensitivity of the critical restructuring cost with respect to the expected
profitability of the bank (µ), volatility of the cash flows (σ), cost of holding cash (r), cost
of raising outside equity (F ), and arrival rate of the outside investors (λ) in the case with
voluntary recapitalizations.
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